An optimal breeding strategy in small dairy cattle breeds

J.R. Thomasen, C. Egger-Danner, A. Willam, B. Guldbrandtsen, M.S. Lund and A. C. Sørensen

> Nordic Implementation Workshop Genomic Selection in Cattle December 12th 2012 Park Inn, Copenhagen

Objective

- Evaluate impact of running a GS breeding scheme compared to a conventional progeny testing program for a small dairy cattle breed
- Evaluate the value of increased genomic information originating from
 - Higher reliability of genomic predictions (ΔR^2)
- Investigate interaction effect
 - Increased value of genomic information and more intensive use of young bulls
- Deterministic simulation study (ZPLAN)

Evaluation criteria's

• Annual monetary genetic gain for the aggregate breeding value

- Discounted profit per cow for an investment period of 15 years
 - Inclusion of variable cost

Traits

- Production trait
 - h²=0.30
 - Economic value: 83 Euro
- Functional trait
 - h²=0.04
 - Economic value: 82 Euro
- Genetic correlation between traits -0.30
- Correlation between the milk production and the breeding goal is the same as in the Nordic total merit index

Breeding Schemes Used to Evaluate Gains

• **Conventional** progeny testing program

- Reference breeding scheme
- Danish Jersey breeding scheme up to 2009 before start of GS

• The Genomic Selection breeding scheme

- Reflect the actual Danish Jersey GS breeding scheme
- Genotyping of bull calves
- Use of YB as bull sires

The Genomic Selection Scheme

Increase in reliability due to genomic information (+ 5%

Main results for comparisons of breeding schemes

	Conventional	GS*	
Genetic Gain	93.2	100	
Discounted Profit	88.7	100	
Generation interval	4.14	3.58	

* Relative values, GS scheme set to 100

Positive interaction between increase in reliability and more intensive use of young bulls

Take home messages

- An optimal breeding strategy in small dairy cattle breeds still involves progeny testing
- Increased reliabilities of GEBV is the key driver for running a more valuable breeding scheme with more intensive use of YB
- The value of increased reliability of GEBV is limited if important breeding parameters are not optimized

Future Directions

Evaluate value of increased reliability originating from genotyping of females

Stochastic simulation study in ADAM

